Numpy¶
Basic Numpy¶
Create array¶
0.1243342257052763
[[0.37067402 0.52523751 0.64556949 0.20251635 0.31186591]
[0.76393491 0.71054838 0.38912143 0.41679623 0.58198636]
[0.2743352 0.02532827 0.82378454 0.84843088 0.3390712 ]]
[[[0.98378478]
[0.29438406]
[0.23131775]
[0.84617288]
[0.38511699]]
[[0.13675279]
[0.75574176]
[0.15372809]
[0.73705805]
[0.73187824]]
[[0.10777166]
[0.34323938]
[0.66599043]
[0.58093256]
[0.27132764]]]
Changing Shape¶
Common Functions¶
Arithmetic¶
Logarithm & Exponential¶
Numpy doesn’t have log function for arbitrary base, so use the rule: logba=logxalogxb.
Aggregate Functions¶
Modify Array¶
Image processing with matplotlib
& numpy
¶
array([[[ True, True, True],
[ True, True, True],
[ True, True, True],
...,
[ True, True, True],
[ True, True, True],
[ True, True, True]],
[[ True, True, True],
[ True, True, True],
[ True, True, True],
...,
[ True, True, True],
[ True, True, True],
[ True, True, True]],
[[ True, True, True],
[ True, True, True],
[ True, True, True],
...,
[ True, True, True],
[ True, True, True],
[ True, True, True]],
...,
[[ True, True, True],
[ True, True, True],
[ True, True, True],
...,
[ True, True, True],
[ True, True, True],
[ True, True, True]],
[[ True, True, True],
[ True, True, True],
[ True, True, True],
...,
[ True, True, True],
[ True, True, True],
[ True, True, True]],
[[ True, True, True],
[ True, True, True],
[ True, True, True],
...,
[ True, True, True],
[ True, True, True],
[ True, True, True]]])
Modify Image: Compression¶
Compress image by cutting the resolution to half, i.e. subset every two rows and every two columns in ndarray.